113 Class Problems: Rings and Fields

How many possible ring structures are there on a set with two elements? How about three?
 Solutions:

$$R = \{a, b\} \Rightarrow R \text{ non-trivial} \Rightarrow l_{R} \neq 0_{R} \Rightarrow eittma = 0_{R}, b = l_{R}$$

In both caus the ving axioms true unique + and x,
fiving $R \cong (\mathbb{Z}_{2\mathbb{Z}}, +, \times)$. => Three are two possible ving strature
 $R = \{a, b, c\} \Rightarrow (R, +)$ cyclic of order 3 => $l_{R} \neq 0_{R}$ and
 l_{R} generates R under addition. The ving axioms again force
unique + and x, giving $R \cong (\mathbb{Z}_{3\mathbb{Z}}, +, \times)$. Three are
6 possible choices three true : 3 for 0_{R} , tollowed by 2
for l_{R} . E.g. $R = 0_{R}, b = l_{R}, c = l_{R} + l_{R}$

2. Prove that if R is a non-trivial ring then $0_R \notin R^*$. Solutions:

 $O_{\mathbf{R}} \in \mathbf{R}^* \Rightarrow \exists a \in \mathbf{R}$ such that $a O_{\mathbf{R}} = O_{\mathbf{R}} a = I_{\mathbf{R}}$ $\Rightarrow O_{\mathbf{R}} = I_{\mathbf{R}} \Rightarrow \mathbf{R}$ bivial. Heave \mathbf{R} non-trivial $\Rightarrow O_{\mathbf{R}} \notin \mathbf{R}^*$ 3. If R_1, R_2, \dots, R_n are rings, then the direct product ring is the cartesian product

$$R_1 \times R_2 \times \cdots \times R_n$$

with term by term addition and multiplication. Are the following true:

(a)
$$(R_1 \times R_2)^* = \{(x_1, x_2) | x_1 \in R_1^*, x_2 \in R_2^* \}.$$

- (b) R_1 and R_2 fields $\Rightarrow R_1 \times R_2$ a field.
- (c) R_1 and R_2 integral domains $\Rightarrow R_1 \times R_2$ an integral domain.
- (d) R finite $\Rightarrow (R, +)$ cyclic?

Solutions:

a) True

$$(x_1, x_2) \in (\mathbb{P}_1 \times \mathbb{P}_2)^m (\Rightarrow \exists (y_1, y_2) \in \mathbb{K} \times \mathbb{P} \text{ such that}$$

 $(x_1, y_1, x_2, y_2) = (y_1, x_1, y_2, x_2) = (1_{e_1}, 1_{e_2})$
 $\Rightarrow x_1 \in \mathbb{P}_1^m, x_2 \in \mathbb{P}_2^m$
6) False
 $\underbrace{\text{Example}}_{(1,0) \notin (0,0) \notin (0,0)} \notin (0,0) \notin (1,0) \notin (0,0) \notin (0,0) \notin (0,0) \notin (1,0) \oplus (0,0)$
 $f = (1,0) (0,1) \neq (0,0) \text{ in } \mathbb{Z} \times \mathbb{Z} \text{ but}$
 $(1,0) (0,1) = (0,0)$
d) False
 $\underbrace{\text{Example}}_{(1,0) \# \mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}} \times \mathbb{Z}/2\mathbb{Z}$